US009077689B2

a2 United States Patent 10) Patent No.: US 9,077,689 B2
Leong 45) Date of Patent: *Jul. 7, 2015
(54) INTELLIGENT PACKET SLICING 7,310,339 Bl 12/2007 Powers et al.
7,379,453 Bl 5/2008 DiMambro
. ; 7,424,018 B2 9/2008 Gallatin et al.
(75) Inventor: PS;HCk Pak Tak Leong, Palo Alto, CA 7436832 B2 10/2008 Gallatin ot al.
Us) 7,440,467 B2 10/2008 Gallatin et al.
. 7,492,763 Bl 2/2009 Alexander, Jr.
(73) Assignee: GIGAMON INC., Santa Clara, CA (US) 7,848,326 Bl 12/2010 Leong et al.
2003/0007489 Al 1/2003 Krishnan et al.
(*) Notice: Subject to any disclaimer, the term of this %88%; 8%‘%5‘3‘5 ﬁ} 1(3);3883 i/(l)'rlllksent |
: : 1ler et al.
patent 1s exlt)eltded or dadju“ed under 35 2004/0042490 Al 3/2004 Henderson et al.
U.S.C. 154(b) by 104 days. 2005/0254490 Al 11/2005 Gallatin et al.
This patent is subject to a terminal dis- 2007/0116043 Al 52007 MeLampy et al.
claimer. OTHER PUBLICATIONS
(21) Appl. No.: 13/489,361 Non-final Office Action dated Jul. 12, 2010, for U.S. Appl. No.
o ’ 12/327,756.
(22) Filed: Jun. 5. 2012 Non-final Office Action dated Dec. 21, 2010, for U.S. Appl. No.
’ T 12/327,756.
. N Final Office Action dated Jun. 8, 2011, for U.S. Appl. No.
(65) Prior Publication Data 12/327.756.
US 2012/0243533 Al Sep. 27, 2012 Advisory Action dated Aug. 23, 2011, for U.S. Appl. No. 12/327,756.
Notice of Allowance and Fee(s) Due dated May 3, 2012, for U.S.
Related U.S. Application Data Appl. No. 12/327,756.
(63) Continuation of application No. 12/327,756, filed on * cited by examiner
Dec. 3, 2008, now Pat. No. 8,208,494.
Primary Examiner — Kwang B Yao
(51) Int.ClL Assistant Examiner — Juvena Loo
HO04J 3/24 (2006.01) (74) Attorney, Agent, or Firm — Vista IP Law Group, LLP
HO4L 29/06 (2006.01)
(52) US.CL 57 ABSTRACT
CPC oo HO4L 69/04 (2013.01); HO4L 69/22 Packets can be intelligently sliced by removing irrelevant
(2013.01) portions of a packet, while retaining relevant portions. For a
(58) Field of Classification Search series of network packets, a packet is obtained from the net-
101 G 370/351-476 Work. The packet includes at least a header, one or more
See application file for complete search history. packet fields, and a first data payload. The protocol of the
packet is determined. Once the protocol is known, the packet
(56) References Cited header is parsed to determine the position of the first data

U.S. PATENT DOCUMENTS

2/2006 Hibbert et al.
8/2006 Lockwoodetal. 709/231

7,007,208 Bl
7,093,023 B2*

1002

FIREWALL
ROUTER 108a

SWITCH

payload. Based on the determine positions of the first data
payload, amodified packet is created by removing or masking
the first data payload.

26 Claims, 7 Drawing Sheets

SWITCH
APPLIANCE

102

O =Network Tap

= Network Port
I:l = Instrument Port

SERVERS

.

Lidh

1P PHONES

NETWORK
INSTRUMENTS

— | — SERVERS

US 9,077,689 B2

Sheet 1 of 7

Jul. 7, 2015

| |

1104 juswnysu| = D

10 JIOMION = D

SILNANMILSNI
SMOM.LAN del jomIN = O
7z [i74} 31T
JONVI'1ddY

201

s HOLIMS \
SYIAYIS 5TTT DDDDE CX)

Q|
—

|
[\l
i
|

[3)
(g
~—
—

SHNOHd dI

[
—
—|

rany SYTAYIS

1]
i

TFIT . _

0Tl

©

| 5

U.S. Patent

Q

HOIIMS

TIVATIIA

US 9,077,689 B2

Sheet 2 of 7

Jul. 7, 2015

U.S. Patent

01y <<

¥ OId
90¢
i43
7483 A

........................... 00t

k543
.......................... 0¥

zit

°0¢

_MOOM

€ "OId

o
(=
o

=T
o™
[2al

(443

(!
|
o)

(]
(=
o)

00€

$0¢

(414

¢OId

902

(s214q p) wnsHIRYD

(s214q 00S1-9%) Bed

o~

x4

(sa1£q) adA1/m8usT

1

(=]

(s014q 9) sseIppe 22.M0G

07 (s914q 9) ssa1ppe uoneUNsa(g

<

002

LOIA

US 9,077,689 B2

LAMOVd
AHIIAON FLVAYD
80

Sheet 3 of 7

Sl
(=
=

avo1Avd vivd 9 O
40 NOILVOOT ANIWIALAA
90

|

o
[
on

Jul. 7, 2015

o
—
[sa

1T304 40
(SY1000.10¥d ANINYE1dd

0L W

[
[
[aa'

009

00¢

LAXOVd NIV.LHO
0L

00L

U.S. Patent

US 9,077,689 B2

01 "OIA
6 "OId
900T
90¢
1] . %
(AR IT°DIA -
90T1 901T 00T ﬂvv

AW 006

0001
8 'OIA

o~
o
o
—
o
o
o

Sheet 4 of 7

(s1q zg Jo seidunu) —
Suipped pue suondg

o

—

—
(o]
—
o)

(suq Z¢)

SS2IPPY LUONEUSS(]

N
—)
—
o
—_—
—

(syq z¢)

Jul. 7, 2015

U.S. Patent

$S2IPPY 22108

W W — (suq 91) (suq 8) (suq8)
00¢1 0011 08 mnsyoeyy 1speoy 1020101 oAl 011
(s1q €13 (519 €) (su991)
W30 Wewdel] sBerg U011 RUSP]
(suq 91) (suq 8) sug)\ | Gug
118us [rI0L 1a1eg J0 ad A, 1H1 UOISION
/ /
808 ¥08 W

008

U.S. Patent Jul. 7, 2015 Sheet 5 of 7 US 9,077,689 B2

o
y—
~ ~ [N ¥ o °
o [} =
g - < © 2 B
=
o/[/
(=3
)
=
wn
~f —
M o [.
S /B I I - S . 2 O
< < < % Il < QD — e
il - - — — =
o (£
=
P S
(=)
< ')
S hi/
5
=
e
|
¢
< o o0 <
[=3 < =3 —_— !
= = o s <
A A A A
r Y Y \'e ™
H : H H
o <t . <t o H o’ w 1 © = o
[- . o — " o v— o~ o) . o)
o) Ny o o o)) o) [an! o
— = — — — — — — —_

1300

US 9,077,689 B2

Sheet 6 of 7

Jul. 7, 2015

U.S. Patent

LT O

/

474!
1104 JUSUINLSU]

OIL1
1104 JUSTUNISU]

aouerddy youmg 1ayoed

01

80ZT diyd
YIUMS JIOMIIN

(

90L1
J1up) 1089901

S~ boLl
10 JI0MIIN

{
S~ 7ol

110d YIOMION

US 9,077,689 B2

Sheet 7 of 7

Jul. 7, 2015

U.S. Patent

81 "OIA

souerddy youmg 1o3oed

CILL
UoJ JUSWNLSU]

OTLI
10J JUSWNLSU]

01
7081 80L1
digD yaumg J10MIdN diyD yonms J10mN
pieD Jowy3neq
0081
2081 90L]
U] JOSSa201J N[10559201

POLT
10 YIomIeN

{

[0L

1104 JI0MISN

US 9,077,689 B2

1
INTELLIGENT PACKET SLICING

RELATED APPLICATION DATA

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/327.756, filed Dec. 3, 2008, pending, the
entire disclosure of which is expressly incorporated by refer-
ence herein.

BACKGROUND

1. Field

This application generally relates to packet networks and
more specifically to intelligently slicing packets obtained
from packet networks.

2. Related Art

In a typical data network, data is transmitted as packets. A
packet generally has a header and a data payload.

Typically, the contents of the packet header may include
several fields containing information about the contents, size,
source, destination, checksum, and type of packet. Occasion-
ally, the end of a packet also contains a field. For example, the
802.3 Ethernet standard specifies that a packet checksum is
located in the final four bytes of an Ethernet packet. The
format, size, and content of a packet header depend largely on
the protocol of the packet. The packet data payload contains
the data message that is being transmitted. Alternatively, a
second packet can be layered within the data payload of a first
packet.

When network problems occur, such as dropped packets,
excessive lag, or low throughput, information contained in
packet headers can be used to aid the diagnosis of the prob-
lem. Often, a large number of packets are needed to diagnose
a problem fully. Therefore, storage of packets is often useful
to enable later analysis and inspection. Additionally, a net-
work professional is typically required to analyze the packets.
The network specialist will often be off site from the network.
Again, this requires that the packets be stored and transmitted
to the network professional for inspection and analysis.

Networks often span a very large physical area. When a
problem occurs, localizing the problem to a specific area may
bedifficult. Therefore, transmitting packets from locations all
over the network to a central location for storage and analysis
is often desirable.

While a single packet is typically small, storing a very large
number of packets can quickly burden a storage device. Addi-
tionally, retransmission of packets from locations all over the
network to the storage location can significantly affect band-
width of the network. The most relevant portions of a packet
for problem diagnosis, the headers, are generally a small
fraction of the overall packet size. Therefore, to conserve
bandwidth and reduce storage requirements, packet slicing
devices can remove irrelevant portions of the packet prior to
retransmission and storage.

However, conventional packet slicing techniques are based
on slicing at a fixed offset regardless of the protocol, size, or
contents of a packet. Therefore, often relevant portions are
lost or irrelevant portions are retained.

SUMMARY

In an embodiment, a packet is obtained from a series of
packets. The packet contains at least a packet header, one or
more packet fields, and a first data payload. The series of
packets uses one or more protocols. After obtaining the
packet, one or more protocols of the obtained packet are
determined. After determining the one or more protocols of

10

15

40

45

55

60

2

the packet, the packet header is parsed to determine the posi-
tion of the first data payload. Next, a modified packet is
created by removing or masking the first data payload based
on the determined location of the first data payload. This
procedure of determining the protocol(s), parsing the header,
and creating a modified packet is repeated for each packet in
the series of packets.

DESCRIPTION OF DRAWING FIGURES

The present application can be best understood by refer-
ence to the following description taken in conjunction with
the accompanying drawing figures, in which like parts my be
referred to by the like numerals:

FIG. 1 illustrates an exemplary computer network;

FIG. 2 illustrates an Ethernet packet;

FIG. 3 illustrates a network packet having layers 2-4;

FIG. 4 illustrates positions of potential fixed offsets for
conventional packet slicing;

FIG. 5 illustrates the sliced packet resulting from a fixed
offset that is too large;

FIG. 6 illustrates the sliced packet resulting from a fixed
offset that is too small;

FIG. 7 illustrates an exemplary process of intelligent
packet slicing;

FIG. 8 illustrates a layout of an IP packet header according
to the IP specification;

FIG. 9 illustrates a modified packet;

FIG. 10 illustrates a second modified packet;

FIG. 11 illustrates a third modified packet;

FIG. 12 illustrates a fourth modified packet;

FIG. 13 illustrates an exemplary SCTP packet;

FIG. 14 illustrates a modified SCTP packet;

FIG. 15 illustrates a second modified SCTP packet;

FIG. 16 illustrates a modified packet created by masking
out the data payload;

FIG. 17 illustrates an embodiment of a packet switch appli-
ance; and

FIG. 18 illustrates an embodiment of a packet switch appli-
ance with a daughter card component.

DETAILED DESCRIPTION

The following description sets forth numerous specific
configurations, parameters, and the like. It should be recog-
nized, however, that such description is not intended as a
limitation on the scope of the present invention but is instead
provided as a description of exemplary embodiments.

With reference to FIG. 1, a packet switch appliance 102 is
integrated with packet network 100. Internet 104 is connected
via routers 106a and 1065 and firewalls 1084 and 1085 to
switches 110a and 11054. Switch 110a is also connected to
servers 112a and 1125 and to IP phones 1144, 1145, and 114c.
Switch 1105 is also connected to server 112¢-e. The packet
switch appliance 102 is connected to various point of the
network via network taps and tap ports on the packet switch
device. Packet switch appliance 102 is also connected to a
variety of network instruments 118, 120, and 122 for moni-
toring network-wide packet traffic. These network instru-
ments include but are not limited to: packet sniffers, intrusion
detection system, and forensic recorder. In alternate embodi-
ments, a packet switch appliance may include fewer compo-
nents or more components, than those depicted.

As depictedinFIG. 1, because packet switch appliance 102
is connected to every device in the packet network, the packet
switch appliance has a global network footprint and may
potentially access all data packets transmitted across the net-

US 9,077,689 B2

3

work. Consequently, through its various network ports,
packet switch appliance 102 can potentially access packets
from anywhere throughout the network.

As discussed earlier, when problems occur with network
100, the information contained within packet headers can be
useful in diagnosing the problems. Storage of a large number
of packets may be required to diagnose the problem fully.
Additionally, because of the global footprint of the network,
packets may be transmitted from locations all over the world.
The retransmission and storage of the packets will potentially
burden the network and storage device. Therefore, slicing the
packets to remove portions can ease the burdens caused by
retransmission and storage. Packets can also be sliced to limit
the visibility of the contents of the packets, such as sensitive
or confidential information contained in the data payload of
packets.

The Open Systems Interconnections Reference Model
(OSI Model) is an abstract description for layered communi-
cations and network protocol design. The OSI Model defines
layers 2, 3, and 4 of a packet as the data link layer, network
layer, and transport layer, respectively. However, these layers
all have similar structures; all three have headers and data
payloads and in the case of Ethernet frames a checksum is
also contained in the final 4 bytes of the packet. For ease of
discussion, the term packet is used to refer to all three of these
structures. The term packet is not meant to be a limitation on
the structure of a data unit or on the layer where the data unit
exists. Also, it should be recognized that a packet can have
more than three layers.

The term packet field refers to fields present in the packet
header and, if present, a checksum field at the end of the
packet. For example, referring to FIG. 2, Ethernet packet 200
conforms to the IEEE Ethernet 802.3 standard and has three
components: header 202, data payload 204, and packet
checksum 206. Packet fields of packet 200 include: destina-
tion address 208, source address 210, length/type 212, and
packet checksum 206.

Additionally, packets utilizing different protocols can be
layered within other packets. For example, referring to FIG.
3, Ethernet packet 300 has header 302, data payload 304 and
checksum field 306. Layered within Ethernet packet data
payload 304 is an Internet Protocol (IP) packet that includes
packet header 312 and data payload 314. Layered within IP
packet data payload 314 is a Transmission Control Protocol
(TCP) packet that includes packet header 322 and data pay-
load 324. The TCP, IP, and Ethernet packets are associated
with layers 4, 3, and 2, respectively, of the OSI Model. Packet
fields of packet 300 include fields within any header 302, 312,
or 322 and packet checksum 306.

Referring to FIG. 4, conventional packet slicing processes
have predetermined fixed offsets 400 or 402 as the positions
for slicing the packet. This process is satisfactory when
packet headers are a constant size and the offset is carefully
chosen to slice off only the irrelevant data payload portion of
the packet. However, in a typical network, packet headers can
vary in size from one packet to the next. This is due to
different protocols, different options available in a single
protocol, and the possibility of packets layered within data
payloads. Therefore, setting a large fixed offset for slicing
packet 300 at position 400 creates packet 500 of FIG. 5.
Packet 500 retains relevant headers 302, 312, and 322 but also
retains irrelevant portion 408, which is part of data payload
324. On the other hand, setting the fixed offset too small, at
position 402, creates packet 600 of FIG. 6. Packet 600 con-
tains no irrelevant portions and retains header 302 and portion
404 of header 312, but packet 600 is missing relevant portion
406, which is part of header 312 and all of header 322.

40

45

50

4

FIG. 7 depicts an exemplary process 700 for intelligently
slicing packets. Initially, in step 702, the packet is obtained.
For example, the earlier discussed Ethernet packet 300 of
FIG. 3 can be obtained from a port of packet switch appliance
102 of FIG. 1.

In step 704, one or more protocols of the obtained packet
are determined. Various processes can be used for determin-
ing the one or more protocols of a packet. For example, in
some networks, only one known protocol might be used.
Therefore, in one exemplary embodiment, the protocol is
known by default.

However, networks more commonly utilize mixed proto-
cols. Therefore, determining the protocol of a packet by
inspection is necessary. With reference to the Internet Proto-
col (IP), the format of IP packet headers is set forth in
RFC791. According to the IP specification, layout 800 in FIG.
8 is the format of an IP packet header. The size of header can
be 20-60 bytes long, depending if optional fields 802 are
present. Among other information, the header contains infor-
mation fields such as the length of the header 804 and header
checksum 806.

In another exemplary embodiment, the obtained packet is
inspected to determine whether the packet is an IP packet.
First, based on the IP specification, the packet field that
should contain the header length is read. Next, based on the
header length, the entire header is read. A checksum for the
header is generated according to the IP specification. Finally,
the generated checksum is compared to the checksum stored
in the header checksum field. If the two checksums match,
then the header is likely an IP header and the packet protocol
is now known to be an IP packet. If the two checksums do not
match, the header is unlikely an IP header, and the packet is
checked for a different protocol.

While the process described above is tailored for checking
for an IP packet, it should be recognized that similar pro-
cesses can be used for other protocols. Examples of other
protocols include Ethernet, Internetwork Packet Exchange
(IPX) Protocol, TCP, Hyper Text Transfer Protocol (HTTP),
and User Datagram Protocol (UDP). Processes for determin-
ing the protocol used by a packet are well known in the art. For
example, Wireshark™ is a software package thatis capable of
identifying hundreds of different protocols based on inspect-
ing the packet.

As discussed earlier with reference to FIG. 3, often, mul-
tiple packets are layered inside of each other. In an exemplary
embodiment, to determine the protocols in packet 300, the
packet is analyzed as a whole first. If the network uses only
Ethernet packets, then the structure of packet 300 and header
302 are already known. However, if more than one standard is
used on the network, then the packet header is analyzed, as
described above, to look for signatures of various protocols.
Once the protocol for the first packet header 302 is deter-
mined, data payload portion 304 is analyzed to determine if
another packet is layered within data payload portion 304.
This is accomplished by analyzing data payload 304 in the
same way as packet 300 was analyzed.

Alternatively, top-level packet 300 may contain informa-
tion in header 302 regarding the type of packet that is layered
within data payload portion 304. For example, the IEEE
Ethernet standard 802.3 specifies a type field that identifies
the protocol of the packet layered in the data payload portion.
Similarly, the IP packet header in layout 800 (FIG. 8) speci-
fies that the packet header contain protocol field 808 that
identifies the protocol of a layered packet. Many other proto-
cols also specify similar fields. Therefore, the presence and
protocol of a layered packet might be determined from read-
ing a packet field in the header of the lower layer packet.

US 9,077,689 B2

5

Once the protocol of layered packet is determined, the
process is repeated on the layered packet’s data payload. In
doing so, the protocol for any number of layered packets is
determined.

Referring to FIG. 7 again, after the protocol(s) of the packet
are determined, the position of the data payload is determined
in step 706. Once the protocol of a packet is known, the format
of the packet, including the header, is also known. Based on
the format of the header, the positions of the different packet
fields can be determine. The position of the data payload
portion can be determined based on information in the packet
fields combined with information from the protocol specifi-
cation.

Finally, in step 708, a modified packet is created by remov-
ing irrelevant portions of the packet while retaining relevant
portions. The modified packet may be based on a copy of the
originally obtained packet. Alternatively, the modified packet
is created by directly modifying the originally obtained
packet. The characteristics of the modified packet are config-
urable by the user specifying which packet portions are rel-
evant and irrelevant.

For example, in one exemplary embodiment, the size of the
modified packet is minimized for storage while still retaining
all relevant header information. What constitutes relevant
information is configurable depending on what the user
requests. For example, referring to FIG. 3 again, assume that
only the information associated with Ethernet header 302 and
checksum 306 are relevant. Modified Ethernet packet 900 in
FIG. 9 is created by removing all irrelevant portions of packet
300. Thus, modified packet 900 includes only Ethernet packet
header 302 and checksum 306.

Ifthe modified packetis to be transmitted over the network,
packet fields may need to be updated to conform to protocol
specifications. Potential packet fields to update include, but
are not limited to, the total packet length field and the check-
sum field. By updating the packet fields, modified Ethernet
packet 1000 of FIG. 10 results. Modified Ethernet packet
1000 includes: modified packet header 1002, which is packet
header 302 with an updated packet length field; data payload
portion 1004, which is a 46 byte zero padded section to bring
the length of the packet to the minimum of 64 bytes; and
updated checksum 1006, which is the correct checksum of the
packet generated according to the Ethernet specification. Eth-
ernet packet 1000 is suitable to retransmit over the network.

Alternatively, the user could specify that all headers related
to layers 2, 3, and 4 of the OSI Model are relevant and that the
modified packet is to be transmitted across the network. In
this case, with reference to FIG. 11, modified Ethernet packet
1100 resembles original Ethernet packet 300 with data pay-
load 324 is removed. Modified packet 1100 contains packet
header 1102, headers 312 and 322, and checksum 1106.
Packet header 1102 can be the same as packet header 302
(FIG. 3) of the original Ethernet packet 300 (FIG. 3). Alter-
natively, header 1102 can be packet header 302 (FIG. 3) with
an updated packet length field. Headers 312 and 322 are the
original IP and TCP headers, respectively, of the original
Ethernet packet 300 (FIG. 3). Checksum 1106 is the correct
checksum of modified packet 1100 generated according to
the Ethernet specification. Ethernet packet 1100 is suitable to
retransmit over the network.

Optionally, packet fields, such as packet length or header
checksums, in headers 312 and 322 could be updated, which
would create modified Ethernet packet 1200 of FIG. 12.
Modified packet 1200 contains: modified packet headers
1102, which is packet header 302 with an updated packet
length field; headers 1212 and 1222, which are the modified
version [P and TCP header 312 and 322, respectively; and

10

15

20

25

30

35

40

45

50

55

60

65

6

updated checksum 1206, which is the correct checksum of
modified packet 1200 generated according to the Ethernet
specification. Ethernet packet 1200 is suitable to retransmit
over the network.

In a different configuration, the obtained packet uses the
Stream Control Transmission Protocol (SCTP) as specified in
RFC 4960 and RFC 3286. Referring to FIG. 13, an exemplary
SCTP packet 1300 has a common header 1302 and one or
more chunks. Each chunk 1304, 1306, 1308, and 1310 has a
header 1314, 1316, 1318, and 1320, respectively, and a data
payload 1324, 1326, 1328, and 1330, respectively. The user
can configure multiple different parts of the SCTP packet as
relevant.

For example, if all header information and data payload
portion 1328 are set as relevant, then modified packet 1400 of
FIG. 14 results. The common header 1402 and chunk headers
1414, 1416, and 1420 are based on the original headers 1302,
1314, 1316, and 1320, respectively, with updated fields such
as the length of the packet or chunk and the header or chunk
checksums.

Alternatively, if only the common header 1302 is set as
relevant, then modified packet 1500 of FIG. 15 results. Packet
1500 includes only unmodified common header 1302. Also,
some chunks of a SCTP packet (such as chucks 1304 and
1306) can be kept, while other chucks (such as chucks 1308
and 1310) are sliced because each chuck represents a unique
flow.

Itshould be recognized that whenever SCTP packet 1300 is
modified to create a modified packet, such as modified packet
1400 or 1500, the modified packet includes an updated check-
sum, which is the correct checksum of the modified packet
generated according to the Ethernet specification.

While the discussion of slicing a SCTP so far is in the
context of a discrete SCTP packet, the SCTP packet can just
as easily be layered within other packets of different proto-
cols. For example, an SCTP packet might be layered inside of
an IP packet. The IP packet might further be layer within an
Ethernet packet. In this case, the Ethernet header, IP header,
etc., are part of the common header.

In another exemplary embodiment, as an alternative to
slicing packets, there may be a desire to have the packets
retain their original size. This case arises when, for example,
analysis of the network requires realistic bandwidth but there
is a need for the contents of the packets to remain confidential.
This type of confidentiality concern occurs in multiple cir-
cumstances such as when the data payload may contain sen-
sitive information like bank records.

Referring to FIG. 16, in an alternative exemplary embodi-
ment, modified packet 1600 is created by masking the data
payload 324 (FIG. 3) of packet 300 (FIG. 3) with data payload
1624. By masking irrelevant portions, the packet retains it
original size while still protecting the confidentially of con-
tents of the data payload. Masking the data payload can be
accomplished by overwriting it with a repeating predeter-
mined pattern such as 0x55 or by overwriting the data payload
with random data. While the length of the packet stays the
same, modified packet 1600 includes a modified packet
checksum 1606, which is created by updating checksum field
306 (FIG. 3) of the original packet with the correct checksum
generated according to the Ethernet specification. Addition-
ally, modified TCP header 1622 may be created by updating
TCP packet header 322 (FIG. 3) with the correct checksum of
the new TCP packet, which includes masked data payload
1624. Alternatively, TCP header 1622 can be the same as TCP
packet header 322 (FIG. 3).

Referring back to FIG. 1, in an exemplary embodiment, the
process steps described in process 700 (FIG. 7) are imple-

US 9,077,689 B2

7

mented in packet switch appliance 102. FIG. 17 depicts an
embodiment of packet switch appliance 102 in detail. In the
present embodiment, packet switch appliance 102 includes
processorunit 1706, network switch chip 1708, network ports
1702 and 1704, and instrument ports 1710 and 1712. The
steps of process 700 (FIG. 7) can be performed by processor
unit 1706 and/or network switch chip 1708.

Referring to FIG. 18, in an alternative embodiment of
packet switch appliance 102 (FIG. 1), daughter card 1800 is
installed. Daughter card 1800 includes processor unit 1802
and network switch chip 1804. In the present exemplary
embodiment, process 700 (FIG. 7) can be offloaded to daugh-
ter card 1800 where processor unit 1802 and/or network
switch chip 1804 perform the steps of process 700 (FIG. 7).
For additional description of a packet switch appliance with a
daughter card, see U.S. patent application Ser. No. 11/796,
001, filed Apr. 25, 2007, which is incorporated herein by
reference in its entirety for all purposes.

The foregoing descriptions of specific embodiments have
been presented for purpose of illustration and description.
They are not intended to be exhaustive or to limit the inven-
tion to the precise forms disclosed, and it should be under-
stood that many modification and variations are possible in
light of the above teaching.

I claim

1. A method for processing a packet, comprising:

obtaining a packet from a network, the obtained packet

having at least a packet header, one or more packet
fields, and a first data payload;

determining one or more protocols used by the obtained

packet;

based on the determined one or more protocols, determin-

ing a position of the first data payload; and

creating a modified packet based on the determined posi-

tion of the first data payload, wherein the act of creating
the modified packet comprises removing or masking the
first data payload based on the determined position of
the first data payload.

2. The method of claim 1, wherein the act of creating the
modified packet further comprises:

removing or masking a data payload of a second packet

layered within the obtained packet while retaining one
or more packet headers contained in the obtained packet
relating to one or more layers of an Open Systems Inter-
connections Reference Model.

3. The method of claim 1, wherein the obtained packet
further has a second data payload, and wherein the act of
creating the modified packet further comprises removing or
masking the second data payload, the first and second data
payloads being non-contiguous.

4. The method of claim 1, further comprising:

after creating the modified packet, transmitting the modi-

fied packet over the network.

5. The method of claim 4, wherein the act of creating the
modified packet comprises:

updating one or more packet fields.

6. The method of claim 5, wherein the act of updating the
one or more packet fields comprises:

updating a checksum field.

7. The method of claim 1, wherein the modified packet
comprises a payload, at least a portion of the payload of the
modified packet being different from the payload of the
packet obtained from the network.

8. A program product having a non-transitory medium
storing a program, an execution of which by a processor
causes a process to be performed, the program comprising
instructions to:

25

45

50

55

60

8

obtain a packet from a network, the obtained packet having
at least a packet header, one or more packet fields, and a
first data payload;

determine one or more protocols used by the obtained

packet;

based on the determined one or more protocols, determine

a position of the first data payload; and

create a modified packet based on the determined position

of the first data payload;

wherein the instructions to create the modified packet com-

prises removing or masking the first data payload based
on the determined position of the first data payload.

9. The product of claim 8, wherein the instructions to create
the modified packet further comprise instructions to:

remove or mask a data payload of a second packet layered

within the obtained packet while retaining one or more
packet headers contained in the obtained packet relating
to one or more layers of the Open Systems Interconnec-
tions Reference Model.

10. The product of claim 8, wherein the obtained packet
further has a second data payload and the instructions to
create the modified packet further comprise instructions to:

remove or mask the second data payload, the first and

second data payloads being non-contiguous.

11. The product of claim 8, further comprising instructions
to:

transmit the modified packet over the network.

12. The product of claim 11, wherein the instructions to
create the modified packet comprise instructions to:

update one or more packet fields.

13. The product of claim 12, wherein the instructions to
update the one or more packet fields comprise instructions to:

update a checksum field.

14. The product of claim 8, wherein the modified packet
comprises a payload, at least a portion of the payload of the
modified packet being different from the payload of the
packet obtained from the network.

15. A packet switch appliance configured to be connected
to a network, the packet switch appliance comprising:

a plurality of network ports for packet reception from the

network;

a plurality of instrument ports for packet transmission to

instruments; and

aprocessor coupled to the network ports and the instrument

ports;

wherein the processor is configured to:

obtain a packet from the network through one of the
network ports, the obtained packet having at least a
packet header, one or more packet fields, and a first
data payload,

determine one or more protocols used by the obtained
packet,

based on the determined one or more protocols, deter-
mine a position of the first data payload, and

create a modified packet based on the determined posi-
tion of the first data payload;

wherein processor is configured to create the modified

packet by removing or masking the first data payload
based on the determined position of the first data pay-
load.

16. The packet switch appliance of claim 15, wherein pro-
cessor is configured to create the modified packet further by:

removing or masking a data payload of a second packet

layered within the obtained packet while retaining one
or more packet headers contained in the obtained packet
relating to one or more layers of an Open Systems Inter-
connections Reference Model.

US 9,077,689 B2

9

17. The packet switch appliance of claim 15, wherein the
obtained packet further has a second data payload, and
wherein the processor is configured to create the modified
packet further by removing or masking the second data pay-
load, the first and second data payloads being non-contigu-
ous.

18. The packet switch appliance of claim 15, wherein the
processor comprises a first processor unit.

19. The packet switch appliance of claim 18, wherein the
processor further comprises a second processor unit.

20. The packet switch appliance of claim 19, wherein the
second processor unit is a part of a daughter card.

21. The packet switch appliance of claim 18, wherein the
processor further comprises a network switch chip.

22. The packet switch appliance of claim 15, wherein one
of'the instruments has network monitoring capability, and the
packet switch appliance is configured to communicate with
the one of the instrument through one of the instrument ports.

10

15

10

23. The packet switch appliance of claim 15, wherein the
processor is also configured to:

after creating the modified packet, pass the modified packet

for transmission of the modified packet over the net-
work.

24. The packet switch appliance of claim 23, wherein the
processor is configured to create the modified packet by:

updating one or more packet fields.

25. The packet switch appliance of claim 24, wherein the
processor is configured to update the one or more packet
fields by:

updating a checksum field.

26. The packet switch appliance of claim 15, wherein the
modified packet comprises a payload, at least a portion of the
payload of the modified packet being different from the pay-
load of the packet obtained from the network.

#* #* #* #* #*

